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Overview

Parameter balancing is a method to determine complete, consistent sets of model parameters from
potentially incomplete and contradictory data. Here we summarize the formulae needed for kinetic
models of cell metabolism. We start with the basic concept and then discuss additional features
that address typical problems of kinetic data (incompatible measurement conditions, few data
available). Finally, we outline potential extensions of the method.

1 Parameter balancing – basic method

The parameters of kinetic models can be mutually dependent, either by their definitions or because
they are constrained by thermodynamics. For many kinetic models, all relevant quantities can be
split into two subsets: a set of mutually independent basis quantities that can be chosen arbitrarily,
and a set of derived quantities that can be computed from these basis quantities. This partitioning
of the parameter set is exploited by parameter balancing. A key component is the dependence
matrix Q, which relates both groups of quantities.

Of course, the shape of this matrix depends on the parameters appearing in a model, which in
turn depend on the choice of enzymatic rate laws. To be specific, we refer in this article to the
modular rate laws, a family of rate laws for reactions with arbitrary stoichiometries [1], but the
same approach also works for most other reversible rate laws. The modular rate laws share the
form

vl(c) = ul fl(c)
Tl(c)

D∗l (c)
(1)

where vl is the rate of the lth reaction, ul is the enzyme level (concentration or amount, depending
on the definition), and fl and D∗l are positive terms describing the regulating or saturating influence
of metabolites with concentrations ci (for detailed formulae, see [1]). The term that is most relevant
for parameter balancing is the numerator

Tl = kcat+l

∏
i

(
ci
kMli

)hln
+
il

− kcat−l

∏
i

(
ci
kMli

)hl n
−
il

, (2)

containing the forward and backward catalytic constants kcat±l (in 1/s) and the reactant constants
kMli (in mM). The cooperativity factors hl were introduced in [1] to describe sigmoid kinetics, for
non-sigmoid kinetics they have a value of 1. The symbols n+il and n−il denote the (positive) stoichio-
metric coefficients of substrates and products, respectively. As we shall see, the thermodynamic
laws that are incorporated in the term Tl (and in corresponding terms appearing in many other
rate laws) are responsible for important dependencies among kinetic parameters.

These dependencies lead to dependence matrices which can be constructed from the choice of
quantities used in the model, the metabolic network structure, and the available data. Each row of
the matrix corresponds to one quantity and shows how it is computed from the basis quantities. To
explain this in detail, we will now consider the various types of quantities and their interrelations.

1.1 Dependencies between model quantities

For metabolites in an ideal solution, the transformed equilibrium constant1 keq (in standard nota-
tion: = K ′) of a biochemical reaction can be computed from the transformed standard chemical
potentials of its reactants. Its natural logarithm reads

ln keql = − 1

RT

∑
i

nil µ
′◦
i , (3)

1The model reactions are assumed to involve biochemical reactants (e.g. ATP) rather than individual protonation
states (like ATP4−). This implies that the equilibrium constants or chemical potentials considered in a model are
actually transformed thermodynamic quantities, which refer to the biochemical reactants and depend on the pH
value [2, 3]. Accordingly, protons (H+) must not appear in the reaction formulae and all data used have to refer to
transformed quantities. For an excellent introduction to this topic, see the review by Alberty [4].
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where nil is the stoichiometric coefficient of metabolite i in reaction l, µ′◦i is its transformed
standard chemical potential, R is Boltzmann’s gas constant (R ≈ 8.31 J/(mol K)), and T is the
absolute temperature. In contrast to usual practice in kinetic models, we also consider the non-
balanced (“external”) metabolites. If the reaction network contains thermodynamic cycles (i.e., if
the stoichiometric matrix N = (nil) has a non-empty kernel matrix K satisfying N K = 0), Eq. (3)
implies that some of the equilibrium constants are related by Wegscheider conditions [5].

Another group of constraints, the Haldane relationships, follows from the fact that reaction
rates vanish in equilibrium states. For the modular rate laws [1], the Haldane relationships link
the equilibrium constant keq (dimensionless, but possibly referring to a standard concentration
c◦ = 1 mM) with the catalytic constants kcat± (in 1/s) and the Michaelis constants kM (in mM):

hl ln keql = ln kcat+l − ln kcat−l +
∑
i

hl nil ln k
M
li . (4)

After combining Eqs. (3) and (4), the forward and reverse catalytic constants can be expressed as

ln kcat±l = ln kVl ∓
hl
2

∑
i

nil(µ
′◦
i /RT + ln kMli ) (5)

where the velocity constant kVl =
√
kcat+l kcat−l (the geometric mean of both catalytic constants),

has been introduced as a new basis quantity.
Apart from the kinetic constants, the set of basis quantities can also comprise metabolite

concentrations ci and enzyme concentrations ul representing one or several metabolic states, which
need not be stationary. From these concentrations, we can derive a number of other state-dependent
quantities. First, the forward and backward maximal velocities vmax± = u kcat± (with enzyme
concentration u) can be expressed as

ln vmax±
l = lnul + ln kVl ∓

hl
2

∑
i

nil(µ
′◦
i /RT + ln kMli ). (6)

Just like the reaction rates in the modular rate laws, the maximal velocities have units of mM/s.
An extension to reaction rates measured as amounts per time is discussed in section 4. Second,
the transformed chemical potentials µ′i for ideal mixtures can by expressed by

µ′i = µ′◦i +RT · ln ci, (7)

where the concentration ci must be given in units of the standard concentration c◦ = 1 mM. For
charged molecules (ions), we consider the electrochemical potential comprising the additive term
z F Φ, with the charge number z, the Faraday constant F ≈ 96485 C/mol, and the electric potential
Φ of the compartment in which the ions are residing. Given the chemical or electrochemical
potentials, we can compute their negative difference along a reaction

Al = −∆rG
′ = −

∑
i

nilµ
′◦
i −RT

∑
i

nil ln ci, (8)

called the reaction affinity [6].

1.2 The dependence matrix Q

If we take a closer look at equations (3) through (8), we easily notice that some of the quantity
types – the basis quantities – can be freely chosen (e.g. according to data), while all others are
derived from them (see Table 1). Moreover, if we use logarithms for all quantities that do not
represent energies (in units of kJ/mol) – as we did in the equations – all these dependencies are
linear. After collecting the basis quantities in a vector q and all available model quantities in a
vector x, we can express all dependencies by a simple equation

x = Qq, (9)
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µ′◦ lnkV lnkM lnu ln c
lnkeq X
lnkcat± X X X
lnvmax± X X X X
µ′ X X
A X X

Table 1: Dependencies between basis quantities (columns) and derived quantities (rows).

where Q, called dependence matrix, follows from the choice of quantity types to be considered and
from the structure of the kinetic model. Given the model, we can construct the dependence matrix
Q

µ′◦ ln kV ln kM ln kA ln kI lnu ln c

µ′◦

ln kV

ln kM

ln kA

ln kI

lnu
ln c
ln keq

ln kcat+

ln kcat−
ln vmax

+

ln vmax
−

µ′

A



I · · · · · ·
· I · · · · ·
· · I · · · ·
· · · I · · ·
· · · · I · ·
· · · · · I ·
· · · · · · I

− 1
RTN

T · · · · · ·
− 1

2RT Ñ
T I − 1

2 ÑkM · · · ·
1

2RT Ñ
T I 1

2 ÑkM · · · ·
− 1

2RT Ñ
T I − 1

2 ÑkM · · I ·
1

2RT Ñ
T I 1

2 ÑkM · · I ·
I · · · · · RT · I
−NT · · · · · −RT ·NT



, (10)

with unit matrices I of different size and the matrix Ñ = (ñil), where the elements ñil = hl nil
comprise the stoichiometric coefficients nil and the cooperativity factors hl. As above, the stoi-
chiometric matrix N refers both to internal and external metabolites. The kM values are matched
with the respective reactions by an auxiliary matrix ÑkM containing the reordered elements of Ñ .
For instance, the ÑkM matrix for the simple model shown in Figure 1 reads

ln kM11 ln kM12 ln kM22 ln kM23

Reaction1
Reaction2

 −1 1 · ·
· · −1 1

 (11)

The rows in the upper part of Q correspond to the basis quantities and form an identity
matrix (dots represent zeros), while the derived quantities below are computed as shown by the
Eqs. (3) through (8). For simplicity, the dependence matrix Eq. (10) does not show all possible
complications. Below, we shall discuss how the dependence of standard chemical potentials and
equilibrium constants on pH and temperature can be included into the scheme. Other extensions
are discussed in section 4.

1.3 Computing the posterior distribution

Among our model quantities, there are two distinct groups which have to be treated differently:
The first group are standard chemical potentials µ′◦, chemical potentials µ′, and reaction affinities
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Figure 1: Example network with three substances and two reactions. The four stoichiometric
coefficients – corresponding to four kM values – are arranged in the matrix ÑkM given by Eq. (11).

A, which are molar energies (in kJ/mol) and can have positive and negative values. The second
group comprises all other quantities (in different physical units), which are positive and appear in
the equations (3) through (8), and thus in the vectors q and x, as natural logarithms. This distinct
representation is called natural scaling2. Natural scaling allows us to express all dependencies
between the model quantities by linear equations, which is the basis of parameter balancing.

Using equation (9), we can compute all model quantities x from the basis quantities q, both
given in natural scaling. In parameter balancing, we invert this equation and estimate a set of basis
quantities q̄ from a (possibly incomplete and contradictory) data vector x∗ [7]. By applying Eq. (9)
again in forward direction, we then obtain a complete and consistent set x̄ of model quantities,
supposed to resemble the original data x∗.

The estimation itself is based on Bayesian statistics3. We first describe the basis quantities q
by a multivariate normal prior distribution (with mean vector qprior and covariance matrix Cprior),
consider the vector x∗ as input data, and determine the posterior distribution for q. Their posterior,
which is again multivariate normal, shows how plausible certain parameter sets appear in the light
of prior and experimental data. To compute it, we need to prepare the following vectors and
matrices:

1. The vectors x∗ and σx describe the collected kinetic data (arithmetic means and standard
deviations in natural scaling). Each entry corresponds to a model quantity, but the data
vector may also contain several or no values for some of the model quantities. From the
standard errors in σx, we obtain the diagonal covariance matrix Cx = Dg(σx)2.

2. The prior mean vector qprior and covariance matrix Cprior characterize the basis quantities.
Usually, we choose an uncorrelated prior with a diagonal covariance matrix Cprior = Dg(σq)

2.
Priors for the different quantity types can be chosen by the user. Our default values, in rough
agreement with a statistics over collected data values, are listed in Table 2.

3. We define two dependence matrices: while the usual dependence matrices Q is used for for-
ward prediction, a variant Q∗ is needed for parameter estimation. The complete dependence
matrix Q follows from the model structure and from the user’s choice of relevant quantities.
For instance, if only kinetic constants are needed, the columns for metabolite and enzyme
concentrations ln c and lnu can be omitted. By duplicating and omitting certain rows of Q,
we construct the data dependence matrix Q∗ with rows corresponding to the entries of x∗.

By maximizing the logarithmic posterior we obtain the posterior mean vector and the posterior

2In natural scaling, we could also employ a scaling factor for all energy-like quantities to keep the variance of
all quantity types in a similar range. Of course, this scaling factor would then also appear in the formula for the
dependence matrix Q.

3To become familiar with Bayesian concepts like prior and posterior distribution, we recommend the excellent
book on Bayesian data analysis by Gelman et al. [8].
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covariance matrix4

qpost = Cpost ·
(
Q∗T C−1x x∗ + C−1prior qprior

)
(12)

Cpost =
(
C−1prior +Q∗T C−1x Q∗

)−1
. (13)

Since both Cx and Cprior have positive eigenvalues, Eq. (12) implies that the posterior will be
narrower than the prior. This gain in information can be quantified, for instance, by the differential
Shannon entropies5. Finally, the posterior mean and covariance matrix for the complete parameter
vector x can be computed by x̄post = Q q̄post and Cx,post = QCpostQ

T.

1.4 Conversion between non-logarithmic and logarithmic scale

In natural scaling, all quantities are described by multivariate normal distributions. When prepar-
ing the data vector x∗ or when inserting the balanced values into a model, we need to convert the
quantities between natural and non-logarithmic scale. The energy quantities (in kJ/mol) are al-
ways described by normal distributions, but the other quantities will be distributed log-normally6.
In fact, a statistics of kinetic constants in Brenda shows that log-normality is a fairly realistic
assumption, at least for the prior distributions (compare data histograms in [9]).

When converting probability distributions between non-logarithmic and logarithmic scale, we
need to pay special attention to the conversion formulae. On logarithmic scale, the arithmetic
mean, median, and maximum point of the distribution are identical. By taking the exponential
function of this number, we obtain the (non-logarithmic) median, which is identical to the geometric
mean. The (non-logarithmic) arithmetic mean, however, can be much larger. The arithmetic mean
〈·〉 and the variance σ are given by the formulae

〈x〉 = e〈ln x〉+
1
2σ

2
ln x ,

σ2
x = (eσ

2
ln x − 1)e2〈ln x〉+σ

2
ln x (14)

and the conversion in the other direction (to logarithmic scale) reads

〈lnx〉 = ln(〈x〉)− 1

2
ln

(
1 +

σ2
x

〈x〉2

)
,

σ2
ln x = ln

(
1 +

σ2
x

〈x〉2

)
. (15)

It is important to use these formulae carefully and to clear distinguish between mean and median
values, in particular for the priors and pseudo values, which can show large variances.

After parameter balancing, the basis quantities in natural scaling show a multivariate normal
posterior with mean vector q̄post and covariance matrix Cpost. After converting the values back to
non-logarithmic scale, the vector of median values can be directly inserted into an SBML model
as a consistent parameter set. In contrast, the vector of arithmetic mean values will usually not
satisfy the constraints and is therefore not a valid parameter set. Alternatively, we can sample
parameter sets from the posterior by the formula

xsample = x̄post +QC
1/2
post ξ (16)

where C
1/2
post denotes the matrix square root of the posterior covariance matrix and ξ is an in-

dependent standard normal random vector. Each such parameter set can be converted back to

4Computing the inverse of Cprior and Cx is easy because both matrices are usually diagonal. When computing

qpost by Eq. (12), the inverse of C−1
prior + Q∗T C−1

x Q∗ need not be computed explicitly; instead, we can employ a
left matrix division for sparse matrices, which can be computed efficiently by Gaussian elimination.

5The differential Shannon entropy of an n-dimensional multivariate normal distribution with mean x̄ and covari-
ance matrix with determinant |C| is given by S = 1

2
ln ((2πe)n |C|) = n

2
ln (2πe) + 1

2

∑
j lnλj , where the λj are the

eigenvalues of C.
6By definition, a random variable X is log-normally distributed if its logarithm lnX follows a normal distribution.
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non-logarithmic form by applying the exponential function (where appropriate). By creating dif-
ferent models with sampled parameters, we can explore the range of potential model dynamics in
agreement with our present knowledge about the kinetic constants.

2 Data and prior distributions

2.1 How to choose the prior distributions

In any Bayesian approach, the choice of the prior distribution is of crucial importance. In the case
of kinetic models, the priors for basis quantities (see Table 2) can be chosen according to the ranges
of collected data values [10, 11]. But this is not the only possibility; in general, any multivariate
Gaussian prior may be used. Since our normal distribution act as conjugate priors, one could also
reuse a posterior, obtained from parameter balancing, as a prior for another round of parameter
balancing with new data. As a practical application, one could balance the equilibrium constants
and standard chemical potentials for a large metabolic network and then use the resulting posterior
to define consistent correlated priors for kinetic models of different subsystems.

Name Symbol Available Median Std. dev. Mean Standard Unit
values value of log10 value deviation

Standard chemical potentials µ′◦ 45 - - -880 680 kJ/mol
Velocity constants kV - 10 1 141.7 2002 1/s
Michaelis constants kM 62740 0.1 1 1.417 20.02 mM
Inhibitory constants kI 12827 0.1 1 1.417 20.02 mM
Activation constants kA - 0.1 1 1.417 20.02 mM
Metabolite concentrations c 755 0.1 1.5 38.94 1516 mM
Enzyme concentrations E 912 0.0001 1.5 0.0389 15.16 mM

Equilibrium constants keq 2088 1 1.5 389.4 1.516e+05 -
Catalytic rate constants kcat 12083 10 1.5 3894 1.516e+06 1/s
Maximal velocities vmax - 0.001 2 40.29 1.623e+06 mmol/s
Reaction affinities A - - - 0 10 kJ/mol
Chemical potentials µ′ - - - -880 680 kJ/mol

Table 2: Prior distributions (top) and pseudo values (bottom) used in parameter balancing. Dis-
tribution parameters were chosen in rough agreement with a data collection from Brenda [11],
Sabio-RK [12], NIST [13], [14]), and Gibbs free energies published by Alberty [10] (see also [9]).
For energy quantities, the arithmetic means and standard deviations were chosen directly. For all
other quantities, the median values and the spread of their decadic logarithms were chosen and the
arithmetic means and standard deviations for non-logarithmic values were computed from them.

A possible further improvement would be to use priors that are specific for certain enzyme
classes or organisms, obtained from a previous analysis of variance or regression models [15, 16],
or from physical predictions based on molecular structures [17].

2.2 Data and model parameters

If we are using heterogeneous data from the literature, it is important that the data values match
the definition of our kinetic constants. For instance, the IC50 constants describe an inhibitor
concentration that would lead to half-maximal inhibition. This exactly matches the definition of
the kI constants for complete inhibition in the modular rate laws. Other kinetic constants, like
the Michaelis constants, refer to specific rate laws, which are also used to determine their values
in enzyme assays. In parameter balancing, we use such Michaelis constants as proxies for the kM

values in the modular rate laws. The justification for this is that both quantities describe substrate
concentrations leading to a half-maximal rate in the absence of product. Nevertheless, they appear
in different rate laws and are therefore not completely equivalent.
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If the input data table contains more than one value for the same quantity, we could represent
these data values by several rows in the dependence matrix Q∗. However, to reduce the compu-
tational effort, we average over these values (for non-energy quantities, on log scale) using the
formulae σ̂2 = 1/(

∑
i 1/σ2

i ) and x̂ = σ̂2
∑
i xi/σ

2
i , which eventually leads to the same results. Of

course, this averaging is not applied to pH- and temperature-dependent data, which we intend to
keep as separate values.

3 Parameter balancing – additional features

Parameter balancing is a fairly flexible approach, which can be adapted to a variety of basis and
derived quantities. The only restriction is that all dependencies between quantities (possibly,
in their logarithmic form) need to be linear. Here we added some new aspects to the original
parameter balancing method [7]. We extend the range of model quantities from kinetic constants
to state-dependent quantities describing one or more metabolic states (chemical potentials, reaction
affinities), account for measurement conditions affecting the model quantities (pH, temperature,
electric potential), and propose data augmentation to implement further prior knowledge.

3.1 Reaction rates and and reaction affinities

By introducing metabolite and enzyme concentrations as independent basis quantities, we can
capture state-dependent quantities such as the chemical potentials and reaction affinities. Un-
fortunately, the most important quantities – namely the reaction rates themselves – cannot be
included into the scheme because the kinetic rate laws do not have the linear form required for
Eq. (9). However, we can account for them indirectly via the forward and backward reaction rates
(see section 4) or via the reaction affinities.

Depending on their reactant concentrations, chemical reactions can be in equilibrium (where
the reaction rate is zero) or far from equilibrium (almost irreversible reactions). The distance from
equilibrium can be expressed by the reaction affinity, which also determines the reaction direction
[6]

vl 6= 0⇒ sign(vl) = sign(Al), (17)

the exchange fluxes [18], and the ratio of forward and backward rates [1]. The relation (17)
between reaction affinities and reaction directions is exploited by existing methods for flux and
metabolome analysis such as Network-Embedded Thermodynamic (NET) analysis [19] [20], Energy
Balance Analysis [21], and other related flux-balance methods [22]. In parameter balancing, known
reaction affinities can be used as input data for parameter estimation. Moreover, known flux
directions imply inequality constraints for the reaction affinities, which could be used in the future
to improve parameter balancing (see section 4).

3.2 Correction for incompatible pH values and temperatures

Kinetic constants can significantly depend on the measurement conditions, in particular on temper-
ature and the pH value. If data values stem from different experimental conditions, this could lead
to inconsistencies in parameter balancing. To avoid this problem, we account for the measurement
conditions in the estimation procedure. We will illustrate this approach for the pH-dependence of
standard chemical potentials and equilibrium constants, but it applies to other types of quantities
as well.

A standard chemical potential µ′◦ is defined as the chemical potential of a substance in aqueous
solution at a standard concentration of c◦ = 1 mM and at given pressure and temperature. Dis-
solved molecules may assume different protonation states and in biochemical models, such states
are usually summarized in a single reactant variable. It is convenient to describe this reactant by
a transformed standard chemical potential µ′◦, which effectively summarizes different protonation
states and varies with the pH (see [2, 3, 4]). The dependency on other conditions (e.g., salt con-
centrations) can be treated in a similar manner. Since parameter balancing can only handle linear
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dependencies, we approximate the impact of temperature and pH value on the transformed µ′◦

values by a linear expansion

µ′◦(pH,T) ≈ µ′◦(pH
ref ,Tref) +

∂µ′◦

∂pH
∆pH +

∂µ′◦

∂T
∆T. (18)

Tref and pH
ref are reference values for temperature and pH value, and the differences between

actual values and reference values are denoted by “∆”. In practice, T and pH represent the actual
measurement conditions for a certain data value µ′◦, and Tref and pH

ref are the in-vivo conditions
described in the model. To include Eq. (18) in our dependence matrix, we introduce the derivatives

µ′◦pH = ∂µ′◦

∂pH
and µ′◦T = ∂µ′◦

∂T (i.e., the negative molar entropies) as new basis quantities and insert
the terms ∆pH and ∆T into the respective columns of Q∗. The transformed equilibrium constants,
which also depend on the pH value, are treated accordingly. From Eqs. (18) and (3), we obtain
the analogous formula

ln keq(pH,T) ≈ − 1

RT
NT µ′◦(pH

ref ,Tref)− 1

RT
NT ∂µ′◦

∂pH
∆pH −

1

RT
NT ∂µ′◦

∂T
∆T. (19)

The resulting dependence matrix Q∗ has the form (only relevant rows and columns shown)

µ′◦ µ′◦T µ′◦pH

µ′◦

ln keq

(
I ∆T ∆pH

−NT/RT −NT ·∆T/RT −NT ·∆pH/RT

)
. (20)

Note that ∆Tj and ∆pHj can have different values in each row, depending on the measurement
conditions of the respective data points x∗j . In parameter balancing, the matrix Q∗ is used for
estimating the basis quantities q, which are supposed to describe in-vivo temperature and pH. The
matrix Q, on the contrary, is used to recompute all model quantities x, so we set the deviations ∆pH

and ∆T to zero or just omit the quantities µ′◦T and µ′◦pH and the corresponding matrix columns.
Alternatively, we can also employ the µ′◦pH column to describe the pH differences between cell
compartments. This becomes important if the model contains the same species in compartments
with different pH values.

It is clear that the linear expansion Eq. (18) is only a rough approximation, chosen not on
thermodynamic grounds, but for its simplicity. For a better approximation, we could expand
the true pH dependency into a higher-order Taylor series and introduce terms like ∂2µ′◦/∂p2H as
additional basis quantities. This, however, will only be worth the effort if enough data are available.
The proposed handling of of measurement conditions is not restricted to pH and temperature, but
could be used for other measurement conditions like salt concentrations. As pointed out before, it
is also applicable to other quantities, e.g. to pH-dependent kM values.

3.3 Data augmentation: pseudo values for derived quantities

In parameter balancing, we employ priors to keep the balanced quantities within a plausible order
of magnitude, even if few data are available. However, since priors can only be formulated for the
basis quantities, the derived quantities could escape this control and assume unreasonable values.
We address this problem by data augmentation and exemplify this here for equilibrium constants.

If no data value is available for an equilibrium constant, its balanced value will follow mostly
from the priors and from the data values of the standard chemical potentials. Since the prior
distributions are broad and small errors in the µ′◦ values can have a large effect on an equilibrium
constant, the balanced keq value may be unreasonably high or low and show large uncertainty
ranges. If the equilibrium constants themselves were basis quantities, we could delimit them by
their prior distribution. However, this is not directly possible. We might control them, in fact, via
the priors of the µ′◦ values, but this would require complicated, correlated priors. Therefore, we
use data augmentation [23] as a more simple alternative.

9



Data augmentation exploits the fact that a conjugate prior is proportional to the likelihood con-
tribution from a set of prior data. Accordingly, prior terms can be replaced by fictitious “pseudo”
data values. In our case, we augment our data table with pseudo equilibrium constants, represent-
ing the distribution of typical equilibrium constants in our data collection. The same procedure
can also be used for all other derived quantities, in parallel to the use of prior distributions for the
basis quantities.

In the case of equilibrium constants, the pseudo value and its standard error are chosen from
a symmetry consideration. If we exchange the substrates and products of a reaction – which,
of course, is just a matter of definition – the equilibrium constant is replaced by its inverse,
and its logarithmic value switches its sign. Therefore, the distribution of the logarithmic pseudo
equilibrium constant should be centered around zero (ln keq = 0), while its width σln keq represents
the range of logarithmic equilibrium constants in our data collection. For simplicity, we assume a
standard deviation of 1.5 for the decadic logarithms7. The non-logarithmic pseudo values represent
a log-normal distribution with a median of 1 but, due to its large width, the mean value 〈keq〉 is
much larger.

4 Future prospects

Finally, we list a couple of possible extensions that have not been implemented yet in the parameter
balancing workflow.

4.1 Extending the dependence scheme to other biochemical quantities

To support a broader range of quantities in the data and a more detailed description of biochemistry,
the dependence matrix Eq. (10) can be extended to additional basis and derived quantities.

1. Metabolite amounts. To describe metabolite amounts (instead of concentrations) as de-
rived quantities, one could introduce new rows containing a localization matrix with elements
Lij = 1 where Lij = 1 if compound i is localized in compartment j and Lij = 0 otherwise.
The compartment volumes could further be split into ln Ωj(l) = ln Ωcell + ln ∆Ωj(l) where
∆Ωj(l) is the volume of a cell compartment divided by the cell’s total volume. This would
allow to handle parameter uncertainties and correlations caused by an uncertain total cell
size.

2. Enzyme amounts and reaction rates measured as amounts per time. Above, re-
action velocities (and accordingly, maximal velocities) were supposed to have the physi-
cal dimension of concentration per time (mM/s). To obtain maximal velocities given as
amounts/time (in mmol/s) instead, we need to add the term ln Ωj(l) to Eq. (5), where Ωj(l)
is the volume of the cell compartment (with index j(l)) in which the enzyme of reaction l
is residing. To realize this in the dependence scheme, one could introduce the compartment
volumes as new basis quantities. In the rows for maximal velocities (in mmol/s), the depen-
dence matrix would be augmented by an enzyme localization matrix with elements Lenz

lj = 1
if enzyme l is localized in compartment j and Lenz

lj = 0 otherwise.

3. Electrochemical potential To account for the electrochemical potential of charged molecules,
one could introduce the electric potentials of all model compartments (in their scaled form
F Φ, in kJ/mol) as basis quantities and augment the dependence matrix Q by a block matrix
Dg(z)L with the charge numbers zi and the localization matrix L.

4. Arrhenius equation for rate constants The temperature dependence of kinetic rate
constants can be approximated by the Arrhenius equation k(T ) = k0 e−Eact/RT with a hy-
pothetical molar activation energy Eact. If we assume such a relationship for the velocity

7Since the unit of the equilibrium constant depends on the reaction stoichiometry (precisely, on the difference ∆n
between the numbers of substrate and product molecules), one should actually choose different widths for different
groups of reactions depending on the value of ∆n. For simplicity, we just use the same value of σln keq for all
reactions.
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constants kV, we obtain an additional basis parameter Eact for each enzymatic reaction and
the dependence matrix rows describing velocity constants, catalytic constants, and maximal
velocities will contain elements −1/RT .

5. Species types SBML models can contain different <Species> elements referring to the same
chemical entity (possibly defined by a <SpeciesType> element in SBML level 2), but localized
in different compartments. For quantities which do not depend on a molecule’s localization,
only a single basis quantity value needs to be listed8, but several copies of it will appear
in the derived quantities. This also applies to the transformed standard chemical potentials
because their dependence on pH and electrical potential is already taken into account in the
dependence scheme.

6. Independent equilibrium constants Instead of the standard chemical potentials, we may
introduce a subset of independent equilibrium constants as new basis quantities. All remain-
ing equilibrium constants can be derived from them via Wegscheider conditions as described
in [24].

7. kcat over kM The ratios kcat±/kM for enzyme-reactant pairs could be introduced as ad-
ditional derived quantities. By providing data or pseudo values for these ratios, one could
delimit the parameters in a more plausible way than by directly using the kcat± values.

8. Combined kinetic constants In some of the modular rate laws, several kinetic constants
can be combined into a single parameter (see Table A.5 in the supplement of [1]). For
instance, to translate the power-law modular rate law into a simple mass-action rate law,
the enzyme concentration, catalytic constants, and Michaelis constants can be replaced by

parameters k′m±l = ulk
cat±/

∏
i(k

M
li )hln

±
il . Even if such quantities are not available as data,

they could be included into the dependence matrix Q for forward prediction.

9. Several metabolic states We can also consider more than one metabolic state in the
dependence scheme; in this case, rows and columns of all state-dependent quantities will be
duplicated.

10. Forward and backward rates For reversible reactions, the reaction rate can be split
into forward and backward rates v = v+ − v−. The modular rate laws have the form
vl = fl

D∗l
[ṽ+ − ṽ−] where fl describes allosteric regulation, D∗l describes enzyme saturation

depending on the rate law, and the non-regulated, non-saturable rates ṽ±l read

ṽ±l = ul k
cat
±l

∏
i

(
ci
kMci

)hl n
±
il

. (21)

The symbols n+il and n−il denote the (positive) stoichiometric coefficients for reaction sub-
strates (+) and products (-). The logarithmic values follow the linear equation

ln ṽ±l = lnul + ln kcat±l +
∑
i

hl n
±
il

(
ln ci − ln kMci

)
(22)

and can easily be included into the dependence scheme. Even if the rates ṽ±l are not directly
available as data, we could guess their values from given flux data vl and use them as input
data for parameter balancing. Afterward, the initial guess may be iteratively improved based
on the balancing results (fl and D∗l are computed from c, kM, kA, and kI; the individual
fluxes v± follow from v and A).

8The mapping between species and species types has to be implemented in the dependence matrix Q
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4.2 Reducing the numerical effort

In the article, we demonstrate the method with a single reaction, but it works equally well for
complex networks. The number of parameters is determined by the number of metabolites (e.g.,
standard chemical potentials, concentrations), the number of reactions (e.g., catalytic constants,
enzyme levels), reaction/reactant edges (Michaelis constants), or allosteric interactions (activation
and inhibition constants). Since reactions have a typical, limited number of reactants and regula-
tors, the number of model parameters is approximately proportional to the number of reactions in
the network. The computational effort, which involves sparse matrix inversions, grows more than
quadratically, so computer speed will become limiting for large models. A possible way to reduce
the effort is to subdivide a model into smaller parts (maybe, even individual reactions); however,
to ensure compatible balancing results between submodels, all dependencies between the submod-
els will have to be eliminated beforehand. One possibility is to exactly predefine all equilibrium
constants. In this case, parameters could be balanced separately for each reaction, and consistence
could also be reached by safe parametrizations like v(a, b) ∼ kcata − kcat/keq · b for mass-action
rate laws. If the dependence scheme contains metabolite concentrations, their values need to be
fixed at the submodel boundaries as well. In a more advanced approach, one could first balance
the equilibrium constants and the standard chemical potentials (but no other quantities) for the
entire model. The posterior obtained from this first run (describing only the standard chemical
potentials) could later be used to construct correlated priors for the individual smaller submodels.

4.3 Inequality constraints

Another possible extension of parameter balancing would be to impose upper and lower bounds
on individual model parameters or on their ratios or products. After conversion to natural scaling,
this would yield linear inequality constraints, defining a feasible region in parameter space. In
parameter balancing, a point estimate of the model parameters could be obtained by maximizing
the logarithmic posterior, which is a quadratic function. With the new inequality constraints, the
posterior will be restricted to the feasible region, which reduces uncertainties and leads to more
realistic balancing results, but also increases the computational effort. To compute the posterior
mode (i.e., the maximum point), we need to run quadratic programming with linear constraints.
On the same occasion, we could impose equality constraints for prescribing model quantities with
zero uncertainty, e.g., some predefined equilibrium constants. When sampling from the posterior
distribution, we now need to reject all unfeasible points (for a more efficient sampling algorithm,
see [25]). In both cases, the calculations are much more expensive than without the constraints. In
addition, it may also happen that the constraints do not have a solution. An important application
of such inequality constraints would be to restrict the signs of reaction affinities and thereby to
enforce parameter sets that match certain known flux directions.
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